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ABSTRACT 

Soil macronutrients namely, nitrogen, phosphorus and potassium are critical elements for crop growth 
and yield. Their reliable assessment at varying space and time domains is an essential pre-requisite with regard 
to site-specific soil and crop management perspective. The classical methods of their assessment are very 
expensive, time consuming and laborious and hence not appropriate for their characterization at different space 

and time domains.Near-infrared reflectance spectroscopy (NIRS)operating in 4002500 nm wavelength range 
appeared to be a promising alternative for the purpose due to its inherent advantages; rapid, non-destructive, 
non-invasive and acquiescence to both proximal and remote sensing modes of operation. Over the last two 
decades, several studies have demonstrated the potential of NIRS approach to estimate soil macronutrient 
contents. This review intent to provide an overview of NIRS approach and collate information with regard to its 
performance in the estimation of soil macronutrient contents. The performance evaluation of NIRS models was 
based on residual prediction deviation (RPD) value. It was noted that the NIRS approach successfully yielded 
moderate (1.4<RPD<2.0) to accurate (RPD>2.0) estimation of soil macronutrient contents in many 
studies.Thus, NIRS technique promise rapid, reliable and cost-effective analysis of soil macronutrient contents 
at varying spatio-temporal scales. 
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INTRODUCTION 
 

Soil macronutrients namely, nitrogen (N), 
phosphorus (P), and potassium (K), are vital 
elements for crop growth and yield. Their reliable 
assessment in a rapid manner at varying space 
and time domains is an essential pre-requisite of 
site-specific soil and crop management 
programs or precision agriculture(Kim et al., 
2009). It enable actions to optimize 
macronutrient supply for improved soil fertility 
and reduce environmental pollution risk due to 
their excess concentration in soil. However, 
classical soil macronutrient testingbased on 
colorimetry or atomic emission spectroscopy 
techniques are very expensive, time consuming 
and laborious as it involve intense extraction and 
analytical procedures. These limitations 
confound their application to characterize spatial 
or temporal variability of soil macronutrient 
contents even within an individual field. Over the 
last few decades, near-infrared reflectance 
spectroscopy (NIRS) has been acknowledged as 
a rapid, non-destructive and non-invasive 
technique for soil characterization(Shepherd and 
Walsh, 2002; Stenberg et al., 2010). In NIRS 
approach, spectral reflectance of soil in the 

visible, near-and shortwave-infrared portion of 

the electromagnetic spectrum (4002500 nm) is 
related with attribute of interest. The NIRS 
spectral range is mainly characterized by 
electronic transitions, overtones and 
combinations of fundamental vibrations related 
to C–H, N–H and O–H functional 
groups(Stenberg et al., 2010). So, soil attributes 
such as organic carbon, clay, mineral and 
moisture contents which have direct linkage with 
these spectrally active functional groups 
(referred as chromophores) became prime 
targets of NIRS approach. In addition, other soil 
attributes such as soil nutrient contents which 
has co-variation with chromophores are also 
estimated via NIRS (Kinoshita et al., 2012; 
Sarathjith et al., 2014)despite their insignificant 
direct association with spectrally active 
components (referred as non-chromophores). 
With inherent advantages and ability to 
characterize soil nutrient contents, the NIRS 
approach appeared to be a promising solution to 
the aforementioned concerns. Several studies 
have investigated the potential of NIRS 
approach to assess soil macronutrient contents. 
With advancements in multivariate data 
modelling over the last two decades, the linkage 
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between soil spectral signature and 
macronutrients could be established with 
reasonable level of accuracy. However, the 
estimation accuracy of macronutrients via NIRS 
vary across different studies as influenced by 
multiple factors including soil type, reference 
analytical method, data modelling, among 
others. This article collated the outcome of those 
studies and examined the status of soil 
macronutrient contentestimation via NIRS. In 
addition, it briefly addressed the potentials and 
limitations of NIRS approach along with an 
attemptto identify different factors affecting its 
performance in macronutrient content 
assessment. 
 
Fundamentals of near-infrared reflectance 
spectroscopy 
 
Near-infrared absorption 
 

At ambient temperature, molecules of 
matter are in a state of their fundamental 
vibrational energy levels with amplitudes in 
nanometers scale. The frequency of vibration is 
depended on the strength of the bond and the 
mass of the individual bonded atoms or their 
groups. Upon incidence of electromagnetic 
radiation of given wavelength, the amplitude of 
these vibrations increasesdue to transfer of 

photon energy to the molecule (Pasquini, 2003). 
For infrared absorption to happen, a) frequency 
of the radiation matches the natural frequency of 
the vibration and b) molecular vibration should 
impose a change in the dipole moment of the 
molecule. The intensity of a given absorption 
band depends on the magnitude of the dipole 
change (during the displacement of atoms in a 
vibration) and its degree of anharmonicity. Both 
phenomena are typically associated with bonds 
involving the hydrogen atom and some other 
heavier element such as carbon, nitrogen and 
sulphur. Thus, O–H, C–H, N–H and S–H bonds 
tend to have fundamental absorptions in the mid-
infrared (3000–4000 nm) region. The overtones 
and combinations of the fundamental vibrations 
of these functional groups occur in the region of 
energy associated with near-infrared photons. 
The spectral characteristics (in terms of 
reflectance) of soil within NIRS operation range 
(Fig. 1a) typically consist of three prominent 
absorption peaks centered on 1400, 1900 and 
2200 nm which are linked with clay minerals 
(Wetterlind and Stenberg, 2010). The spectral 
features around 1400 and 1900 nm can be 
assigned to the O–H group associated with 
water while metal-hydroxyl stretching 
characterize the absorption around 2200 nm 
(Bricklemyer and Brown, 2010).  

 

 
Fig. 1a) Spectral reflectance of soil; b) Conceptual diagram showing components of a NIRS instrument 

 
Instrumentation 
 

NIRS instruments essentially comprised 
of a light source, detector, wavelengths selection 
component and micro-controller unit to perform 

necessary signal processing for a desired output 
spectrum (Fig. 1b). A tungsten coil or a halogen 
lamp is the mostly used light source in NIRS 
instruments. The detectors based on silicon, 
lead sulphide and indium gallium arsenide  

NIR light source (1)Signal processing (4)

Wavelength 
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Detector (3)

Soil sample

Reflected energy Incident energy

Reflectance spectrum of soil sample
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materials which impart a very high signal-to-
noise ratio are commonly used. Based on the 
technology employed for wavelength selection, 
NIRS instruments are classified as filter, light-
emitting diode (LED) source self-band selection, 
dispersive grating and interferometric (Fourier 
transform) instruments. Instrument selection 
must be guided by end application. Low cost 
instruments, based on filters and LEDs, suffice 
for many dedicated laboratory and routine in field 
applications. Instruments based on fixed 
dispersive optics and sensor arrays have proven 
to be a robust solution when multi-wavelength 
spectral data for in field applications are 
required. Fourier-based instruments must be the 
choice when research, wide application spectra 
and calibration transference are of concern as 
they exhibit the best resolution and signal-to-
noise ratios. 
 
Data modelling 
 

Figure 2 depicts a basic flow chart of 
NIRS data acquisition and modelling. The main 
objective NIRS approach is to link NIRS spectra 
(acquired using NIRS instrument) and target 
attribute (determined by classical reference 
method) of the materials. The spectral data 
consists of the information on both the 
composition (absorption) and scattering of 
incident electromagnetic radiation.  
 

 
 

Fig. 2: Flow chart of near infrared reflectance 
spectroscopic data acquisition and modelling. β and Ԑ 
denotes regression coefficient and residual, 
respectively 

The scattering component is of least 
significance in the context of compositional 
analysis as it does not have energy transfer with 
the sample. But it cause undesired variations 
(baseline shifts and non-linearity) in the spectra 
which can be effectively removed using spectral 
pre-processing. The pre-processing techniques 
may be categorized either as scatter correction 
methods or as spectral derivatives. The former 
category consist of multiplicative scatter 
correction (MSC), detrending (DT), standard 
normal variate (SNV) and normalization while 
first (FD) and second derivatives (SD) constitute 
the latter category (Rinnan et al., 2009).   
The NIRS spectra generally has weak and 
complex absorptions due to overlap of spectral 
features related to constituent functional 
groups.The regression model should be capable 
of extracting relevant spectral information and 
link with the desired attribute. Over years, 
several multivariate statistical algorithms have 
been used to establish spectra-attribute linkage 
(also referred as regression model or calibration 
function). They mainly includestepwise multiple 
linear regression (SMLR), principal component 
regression (PCR), partial least square regression 
(PLSR), support vector machine regression 
(SVR) and multi adaptive regression splines 
(MARS), among others. Accuracy evaluation 
consider simple linear relationship between the 
observed (determined using classical reference 
analysis) and model predicted values as 
expressed in terms of coefficient of 
determination (R2), root mean squared error 
(RMSE) and residual prediction deviation (RPD). 
It may be noted that no statistical limits have 
been defined for any of these indicators for 
model evaluation. Although, no fixed criterion 
has been followed in the NIRS literature to judge 
model performance, RPD criteria as proposed by 
Chang et al. (2001)has been widely used in soil 
NIRS studies. Accordingly, NIRS models are 
categorized into accurate (RPD>2.0), moderate 
(1.4<RPD<2.0) and poor (RPD<1.4) classes.  
 
Estimation of soil macronutrient contents 
 
Model performance 
 

Over the past few decades, several 
studies across the globe have investigated the 
potential of NIRS to estimatemacronutrients and 
often yielded mixed results. Table 1, 2 and 3 lists 

Measurement of spectra (X) and attribute value (Y) 

Spectral pre-processing

Establishment of regression relationship, Y=βX+Ԑ

Accuracy evaluation of regression model



 

35 Assessment of soil macronutrients using near infrared reflectance spectroscopy 

 
Table 1: Details of selected studies on near infrared reflectance based estimation of soil nitrogen 

content  
 
Country/ 

Region 

Wavelength  

range (nm) 

Regression  

algorithm 

Calibration Validation/Cross-validation 
Reference 

n R
2
 RMSE n R

2
 RMSE RPD 

Spain 830–2630 PLSR - - - 
39

3 
0.95 0.41 - 

Zornoza et al. 

(2008) 

China 400–2450 PLSR - - - 26 0.86 24.76 2.49 
Wenjun et al. 

(2014) 

Israel 380–2500 PLSR - - - 50 0.79 - 2.34 
Paz-Kagan et al. 

(2015) 

Israel 380–2500 PLSR - - - 50 0.82 - 1.94 
Paz-Kagan et al. 

(2015) 

China 800–2564 PLSR 60 0.602 0.051 30 0.63 0.06 1.838 Zhang et al. (2016) 

China 800–2564 SVR 60 0.823 0.034 30 0.81 0.05 2.219 Zhang et al. (2016) 

China 900–1700 PLSR 60 
0.93-

0.99 

0.15-

0.51 
30 

0.94-

0.97 

0.34-

0.50 
- He et al. (2017) 

France 350–2500 PLSR - - - 
14

6 
0.92 0.10 3.57 

Vaudour et al. 

(2018) 

n: number of samples; R
2
: coefficient of determination; RMSE: root mean squared error (unit differ across studies); RPD: 

residual prediction deviation; PLSR: partial least square regression; SVR: support vector machine regression 
 

the details of selected studies related to 
NIRSbasedestimation of N, P and K, 
respectively. The NIRS approach was found to 
be suitable for moderate (1.4<RPD>2.0) to 
accurate (RPD>2.0) estimation of Namong all 
the studies compiled. The highest accuracy (in 
terms of R2) was noted in case of He et al. 
(2017) which investigated the effect of soil 
moisture on the detectability of N using NIRS. 
They noted an optimum soil moisture content of 
1.03% at which the validation performance of 
generated PLSR model was found to the highest 
for N estimation (R2=0.97; RMSE=0.34 gKg-

1).Although, PLSR appeared to be the most 
commonly used algorithm for N estimation, 
Zhang et al. (2016) reported superior results of 
SVR than that of PLSR. In case of P, NIRS 
approach yielded accurate models as reported 
by Malley et al. (1999)(RPD=3.44) and Sarathjith 
et al. (2016b) (RPD=2.27). The former study 
noted superior performance of PLSR compared 
to SMLR in conjunction with different 
pretreatments. The latter study endorsed SVR 
models for better results compared to PLSR 
counterpart, both based on discrete wavelet 
transformed spectra. Among other studies, 
bothMouazen et al. (2007)(RPD=1.80) and Paz-
kagan et al. (2015)(RPD=1.92) estimated P with 
moderate accuracy under PLSR framework and 
all the remaining studies failed to achieve P 
estimation with reasonable accuracy. Among 
different studies compiled, accurate NIRS 

models of K were obtained for Malley et al. 
(1999) and Sarathjith et al. (2014) while Abdi et 
al. (2012), Chang et al. (2001) and Debaene et 
al.(2014) yielded those with moderate 
performance. All the remaining studies reported 
poor estimation of K via NIRS.    
 

Covariation assumption- Reason for NIRS 
based estimation of macronutrients 
 

The NIRS wavelength domain is 
characterized mainly by the overtones and 
combinations of fundamental vibrations related 

to CH, NH and OH functional groups. Those 
attributes that has direct linkage with these 
spectrally active functional groups (referred as 
chromophores) are more likely to be the most 
suitable candidate for NIRS based estimation. 
This may justify the estimation of N using NIRS 

as itis directly related to amino (NH) group. But, 
this may not be valid with other attributes (such 
as P and K, among others) with no direct linkage 
with spectrally active functional groups (termed 
as non-chromophores). The predictability of a 
non-chromophore via NIRS is assumed to be 
associated with its covariation with appropriate 
chromophores (Stenberg et al., 2010). Chang et 
al. (2001) assessed the co-variation assumption 
bycomparing the performance of NIRS and 
pedotransfer function (generated using 
chromophores) based models. Some 
otherstudiesused Pearson correlation 
coefficientbetween the target non-chromophore
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and chromophores as a measure of co-
variation(Kinoshita et al., 2012; Nduwamungu et 
al., 2009).Both these methods describe linear 
relation of a non-chromophore with 
chromophores and may fail to characterize their 
non-linear linkage. Recently, Sarathjith et al. 
(2014)suggested an average dependency index 
(ADI) to be used as a measure of co-variation. 

The index computation is versatile to both linear 
and non-linear dependency measures. They 
obtained good relationship (R2=0.93) between 
non-chromophore model performance (in terms 
of RPD) and ADI values (based on adjacency 
values of mutual information) computed using 
iron, clay and organic carbon contents.   

 
Table 2: Details of selected studies on near infrared reflectance based estimation of soil phosphorus 

content 
 

Country/ 

Region 

Wavelength 

range (nm) 

Regression 

algorithm 

Calibration Validation/Cross-validation 
Reference 

n R
2
 RMSE n R

2
 RMSE RPD 

Canada 400–2498 PLSR - - - 28 0.92 0.02 3.65 Malley et al. (1999) 

USA 400–2498 PCR - - - 802 0.40 32.28 1.18 Chang et al. (2001) 

ESA 350–2500 MARS 511 0.32 17.00 - - - - Shepherd and Walsh (2002) 

Mississippi 351–2398 SMLR 191 0.46 - 82 0.51 18.60 - Ge and Thomasson (2006) 

Belgium 400–1700 PLSR - - - 175 0.69 1.35 1.80 Mouazen et al. (2007) 

Zhejiang 350–2500 PLSR 135 0.42 26.31 30 0.29 29.43 - He et al. (2007) 

Spain 830–2630 PLSR - - - 393 0.46 2.02 - Zornoza et al. (2008) 

Missouri 450–2500 PLSR 104 0.32 6.00 104 0.26 6.30 1.15 Sudduth et al. (2009) 

Kenya 350–2500 PLSR - - - 227 0.47 22.57 1.34 Kinoshita et al. (2012) 

Poland 400–2200 PLSR 199 0.36 6.50 199 0.39 6.27 1.30 Debaene et al. (2014) 

China 400-2450 PLSR - - - 26 0.29 19.33 1.17 Wenjun et al. (2014) 

India 400–2450 PLSR 175 0.54 0.57 59 0.30 0.70 1.20 Sarathjith et al. (2014) 

Israel 380–2500 PLSR - - - 50 0.74 - 1.92 Paz-Kagan et al. (2015) 

India 350–2500 SVR 176 0.82 3.88 59 0.80 4.09 2.27 Sarathjith et al. (2016b) 

France 350–2500 PLSR - - - 48 0.12 0.01 1.08 Vaudour et al. (2018) 

 
Factors affecting NIRS based estimation of 
macronutrients 
 
Soil type: The estimation accuracy of a 
macronutrient rely on its direct (in case of N) or 
indirect (in case of P and K) co-variation with 
spectrally active functional groups. Such 
linkages vary across soil types due to their 
inherent difference in characteristics. Hence, the 
estimation accuracy of macronutrients using 
NIRS may differ across different soil types 
irrespective of wavelength range, pre-processing 
and regression algorithms implemented (Table 
1, 2 and 3). This was evident in the study 
reported by Sarathjith et al. (2014) which they 
examined soil attributes of two different soil 
types namely, Alfisols and Vertisols. They noted 
accurate and poor estimation of P and K, 
respectively in Vertisols. On the other hand, K 
was estimated accurately while poor result was 
noted for P in case of Alfisols. This contrasting 
result noted for both P and Kacross different soil 
groups were due to disparity of their co-variation 
with chromophores considered in their study.  

Reference method: Usually, attribute values 
determined using a primary reference method 
may differ from those obtained using another 
method. Consequently, NIRS performances also 
vary depending on the type of primary reference 
method as the approach is unique to spectra-
attribute linkage. The variation in NIRS 
performance noted in case of extractable 
K(Table 3) determined using ammonium acetate 
(R2=0.55; RPD=1.44) and Mehlich III (R2=0.64; 
RPD=1.64) extraction methods (Chang et al., 
2001)is an example that emphasize the selection 
of suitable reference method for NIRS based 
analyses. 
 
Spectral pre-processing and regression 
algorithm: Different studies have tested several 
spectral pre-processing techniques for their 
suitability to estimate soil macronutrients, but 
only the best results obtained in those studies 
are only presented in Table 1, 2 and 3.It may be 
noted that the best pre-processing techniqueis 
not consistent across different studies.This is 
due to variation in scattering and noise
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Table 3: Details of selected studies on near infrared reflectance based estimation of soil potassium 

content 
  

Country/ 
Region 

Wavelength 
range (nm) 

Regression 
algorithm 

Calibration Validation/Cross-validation 
Reference 

n R
2
 RMSE n R

2
 RMSE RPD 

Canada 400–2498 SMLR - - - 28 0.94 0.54 4.21 Malley et al. (1999) 

USA 400–2498 PCR - - - 802 0.64 132.43 1.64 Chang et al. (2001) 

ESA 350–2500 MARS 512 0.66 0.25 - - - - Shepherd and Walsh (2002) 

Mississippi 351–2398 SMLR 191 0.40 - 82 0.16 16.00 - Ge and Thomasson (2006) 

Zhejiang 350–2500 PLSR 135 0.61 30.95 30 0.58 32.98 - He et al. (2007) 

Spain 830–2630 PLSR - - - 60 0.79 0.11 - Zornoza et al. (2008) 

Missouri 450–2500 PLSR 104 0.41 40.10 104 0.36 41.8 1.25 Sudduth et al. (2009) 

Turkey 350–2500 PLSR 359 0.44 0.19 153 0.32 0.21 1.21 Bilgili et al. (2010) 

Canada 400–2500 PLSR 150 0.79 25.00 38 0.62 44.6 1.59 Abdi et al. (2012) 

Kenya 350–2500 PLSR - - - 227 0.25 160.96 1.14 Kinoshita et al. (2012) 

Poland 400–2200 PLSR 199 0.46 3.67 199 0.46 3.31 1.40 Debaene et al. (2014) 

China 400–2450 PLSR - - - 26 0.07 20.82 0.77 Wenjun et al. (2014) 

India 400–2450 PLSR 174 0.87 0.28 58 0.75 0.37 2.03 Sarathjith et al. (2014) 

Israel 380–2500 PLSR - - - 50 0.614 - 2.00 Paz-Kagan et al. (2015) 

India 350–2500 SVR 175 0.42 0.26 58 0.32 0.27 1.22 Sarathjith et al. (2016b) 

n: number of samples; R
2
: coefficient of determination; RMSE: root mean squared error (unit differ across studies); RPD: 

residual prediction deviation; PCR: principal component regression; MARS: multi adaptive regression splines; SMLR: 
stepwise multiple linear regression; PLSR: partial least square regression; SVR: support vector machine regression 

 
effects in the measured spectra caused due to 
different sample preparation (dry, moist, ground, 
intact, particle size), instrument (type, 
wavelength range, resolution) and measurement 
(humidity, temperature, replications) conditions 
involved in those studies. Thus, this review is not 
decisive in favor of a particular preprocessing 
technique to be used for macronutrient 
estimation. Although utility of several regression 
algorithms to estimate soil macronutrients (Table 
1, 2 and 3) have been tested, PLSR appeared to 
the most popular and widely used technique 
among them. The main reason for its popularity 
may be attributed to its ability to account for 
multicollinearity pertained in spectra, ease of 
interpretation and better computational efficiency 
(Sarathjith et al., 2016a; Viscarra Rossel et al., 

2006). Moreover, the PLSR could yield accurate 
estimation of soil macronutrients(Paz-Kagan et 
al., 2015; Sarathjith et al., 2014) although SVR 
outperform it when used in conjunction with 
spectra subjected to discrete wavelet 
transformation(Sarathjith et al., 2016b).  
 
Potentials and limitations  
 

The NIRS approach has several 
advantages compared to conventional primary 
reference methods. It demands minimum or no 
sample preparation and does not involve the use 
of chemicals. The approach is very fast as it 
takes only fraction of a minute for spectral 
measurement against the cumbersome and 
tedious conventional methods. In NIRS 
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approach, the different target attributes can be 
related to a single spectral signature of soil. 
Once such linkages (NIRS models) are 
established, the approach can be suitably used 
for simultaneous estimation of multiple soil 
attributes(Sarathjith et al., 2016a). In addition, 
the NIRS approach involve non-destructive and 
non-invasive measurements. Moreover, the 
approach is acquiescent to laboratory, field, 
airborne and space-borne hyperspectral 
measurements. For example, spectral 
measurements or the spectra-attribute linkages 
developed using a laboratory NIRS instrument 
may be transferred to other remote sensing 
modes(Nouri et al., 2017) and vice versa. Hence 
with the advent of novel hyperspectral 
measurement systems, the approach would 
enable rapid estimation of soil attributes at 
varying space and time scales.  

One major limitation of NIRS is the soil 
specific nature of spectra-attribute linkages 
(calibration functions). Although several NIRS 
calibrations of soil attributeshave been 
developed across the globe, most of themremain 
valid only for the type of soil used in those 
studies. Also, NIRS calibration functions are 
bound within the limits of sample attribute 
values. Thus, the NIRS estimated attribute value 
of a sample may not be reliable if it is outside the 
range of calibration. A possible solution for these 
problems is to develop robust calibration 
functions using a large and diverse spectral 
libraries consisting of samples representing 
maximum variability in soil types and attribute 
values. However, this remains a challenging 

task. The other limitation associated with NIRS 
approach is that it is not standalone. It has to 
rely on primary reference methods to develop 
and test calibration functions. Thus, the quality of 
reference analysis is decisive of the accuracy of 
NIRS estimates. Any error associated with 
reference analysis may get propagated and lead 
to unreliable calibration functions (Chodak, 
2008). The other limitation of NIRS is the high 
cost of good quality NIRS instruments. The 
approach would be cost-effective only when very 
large numbers of samples are to be analyzed 
during the operational period of the instrument. 
 
Conclusions and future outlook  
 

The NIRS technique promise rapid, 
reliable and cost-effective analyses of soil 
macronutrient contents.Statistical algorithms 
such as PLSR are capable of establishing robust 
and reliable spectra-macronutrient linkage. 
However, the use of new machine learning and 
hybrid (Reichstein et al., 2019) approaches may 
be investigated in future studies for improved 
and robust NIRS models for macronutrient 
estimation. The use of hyperspectral remote 
sensors (airborne and space borne) may be 
examined for their potential to estimate soil 
macronutrients. Nevertheless, the feasibility of 
transferring calibration functions of soil 
macronutrients across proximal and remote 
sensing modes may be examined for better 
practical utility of the NIRS approach. 
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